Protein structure: geometry, topology and classification

Protein structure: geometry, topology and classification

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : W R Taylor; A C W May; N P Brown; A Aszodi
  • ناشر : Reports on progress in physics
  • چاپ و سال / کشور: 2001
  • شابک / ISBN : 0000000000006

Description

I Introduction 6 1 Prologue 7 1.1 Scope and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Why Proteins? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Catching a Demon . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of theWork . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Basic Principles of Protein Structure 12 2.1 The shapes and sizes of proteins . . . . . . . . . . . . . . . . . . . 12 2.1.1 Fibrous proteins . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Globular proteins . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Membrane proteins . . . . . . . . . . . . . . . . . . . . . . 13 2.2 The hydrophobic core . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Secondary structure . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Packed layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 All-α proteins . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2 All-β proteins . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3 α-β proteins . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Barrel structures and β-helices . . . . . . . . . . . . . . . . . . . . 17 2.6 Protein Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 Domain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 II Protein Structure Comparison and Classification 23 3 Overview of Comparison Methods 24 3.1 Challenges for Structure ComparisonMethods . . . . . . . . . . . 24 3.2 Degrees of Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Different Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Comparison Power . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 Feature or Relationship . . . . . . . . . . . . . . . . . . . . 26 3.3.3 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.1 The basic evolutionary model . . . . . . . . . . . . . . . . 27 3.4.2 Sequence Alignment . . . . . . . . . . . . . . . . . . . . . 29 3.4.3 Gap-penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.4 Structure Biased Gap-penalties . . . . . . . . . . . . . . . 31 2 4 Early and Simple Approaches 31 4.0.5 Manual and semi-automaticmethods . . . . . . . . . . . . 32 4.0.6 Fragment based methods . . . . . . . . . . . . . . . . . . . 32 4.1 Comparing Feature Strings . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 Residue level . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Backbone-fragment level . . . . . . . . . . . . . . . . . . . 34 4.1.3 Secondary structure level . . . . . . . . . . . . . . . . . . . 34 5 3D Methods without dynamic programming 34 5.1 Distance-matrixmatching . . . . . . . . . . . . . . . . . . . . . . 35 5.1.1 Early attempts . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1.2 The DALI method . . . . . . . . . . . . . . . . . . . . . . . 36 5.1.3 Backbone fragmentmethods . . . . . . . . . . . . . . . . . 36 5.2 Secondary structure graph-matching . . . . . . . . . . . . . . . . 37 5.3 Geometric-hashing approach . . . . . . . . . . . . . . . . . . . . . 38 6 3D Methods using Dynamic Programming 40 6.1 Using structural superposition . . . . . . . . . . . . . . . . . . . . 40 6.2 Using the relationships of internal features . . . . . . . . . . . . . 41 6.2.1 The COMPARER program. . . . . . . . . . . . . . . . . . . . 41 6.2.2 The SSAP program . . . . . . . . . . . . . . . . . . . . . . 42 6.3 Iterated Double Dynamic Programming . . . . . . . . . . . . . . . 44 6.3.1 Double Dynamic Programming . . . . . . . . . . . . . . . 44 6.3.2 Selection and Iteration . . . . . . . . . . . . . . . . . . . . 45 6.3.3 Sampling alternate alignments . . . . . . . . . . . . . . . . 45 7 Assessment of Significance 47 7.1 Score distributions fromknown structures . . . . . . . . . . . . . 47 7.2 Randomstructural models . . . . . . . . . . . . . . . . . . . . . . 48 7.3 Randomsed alignment models . . . . . . . . . . . . . . . . . . . . 48 7.4 Scoring and biological significance . . . . . . . . . . . . . . . . . . 49 7.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.5.1 Distant globin similarities . . . . . . . . . . . . . . . . . . 50 7.5.2 Assessment against chain reversal model . . . . . . . . . . 52 8 Protein Structure Classification 54 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.1.1 Practical applications . . . . . . . . . . . . . . . . . . . . . 54 8.1.2 Genome appliactions . . . . . . . . . . . . . . . . . . . . . 55 8.2 Practical approaches to classification . . . . . . . . . . . . . . . . 55 8.2.1 Automated approaches to classification . . . . . . . . . . . 56 8.3 Organisation of the classifications . . . . . . . . . . . . . . . . . . 57 8.3.1 The unit of classification . . . . . . . . . . . . . . . . . . . 57 3 8.3.2 Hierarchical organisation . . . . . . . . . . . . . . . . . . . 57 8.3.3 Hierarchical classification . . . . . . . . . . . . . . . . . . . 58 8.4 Remaining Problems . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.4.1 What questions does classification help us to answer? . . . 58 8.4.2 Questions raised by classification . . . . . . . . . . . . . . 59 8.4.3 Future prospects . . . . . . . . . . . . . . . . . . . . . . . 60 III Geometric Abstractions and Topology 61 9 Simplified Geometries 62 9.1 Structure Representations . . . . . . . . . . . . . . . . . . . . . . 62 9.1.1 Frombonds to cartoons . . . . . . . . . . . . . . . . . . . 62 9.1.2 From3-D to 2-D . . . . . . . . . . . . . . . . . . . . . . . 62 10 Stick Representation 64 10.1 Secondary structure line-segments . . . . . . . . . . . . . . . . . . 64 10.1.1 Problems with current criteria . . . . . . . . . . . . . . . . 64 10.1.2 Line segments frominertial axes . . . . . . . . . . . . . . . 65 10.1.3 Dynamic programming solution . . . . . . . . . . . . . . . 66 10.1.4 ‘Continuous’ secondary structure types . . . . . . . . . . . 67 11 Ideal Forms 67 11.1 Layer Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.1.1 α/β/α layers . . . . . . . . . . . . . . . . . . . . . . . . . 70 11.1.2 β/β layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.1.3 β/α-barrel proteins . . . . . . . . . . . . . . . . . . . . . . 71 11.1.4 All-α proteins . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.1.5 Transmembrane models . . . . . . . . . . . . . . . . . . . 71 11.2 Stick-figure comparisons . . . . . . . . . . . . . . . . . . . . . . . 73 11.2.1 Angle and Distancematching . . . . . . . . . . . . . . . . 73 11.2.2 Finding the best match . . . . . . . . . . . . . . . . . . . . 73 11.2.3 Evaluation using SAP . . . . . . . . . . . . . . . . . . . . . 76 11.2.4 Nested solutions . . . . . . . . . . . . . . . . . . . . . . . . 76 11.3 Classification using ideal stick forms . . . . . . . . . . . . . . . . . 78 11.3.1 A periodic table of proteins . . . . . . . . . . . . . . . . . 78 12 Fold Combinatorics 80 12.0.2 Motif incorporation . . . . . . . . . . . . . . . . . . . . . . 80 12.1 Evaluating folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 13 Protein Topology 84 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 13.2 Chemical topology . . . . . . . . . . . . . . . . . . . . . . . . . . 84 13.3 Polymer topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 13.3.1 Bond direction . . . . . . . . . . . . . . . . . . . . . . . . 86 13.3.2 Linear polymers . . . . . . . . . . . . . . . . . . . . . . . . 86 13.3.3 Branching polymers . . . . . . . . . . . . . . . . . . . . . . 86 13.3.4 Circular polymers . . . . . . . . . . . . . . . . . . . . . . . 86 13.4 True Topology of Proteins . . . . . . . . . . . . . . . . . . . . . . 87 13.4.1 Disulfide bridges . . . . . . . . . . . . . . . . . . . . . . . 87 13.4.2 Other cross-links . . . . . . . . . . . . . . . . . . . . . . . 89 13.5 Pseudo-Topology of Proteins . . . . . . . . . . . . . . . . . . . . . 89 13.5.1 Topology of weak links in proteins . . . . . . . . . . . . . . 89 13.5.2 Topology of ‘circular’ proteins . . . . . . . . . . . . . . . . 90 13.5.3 ‘Topology’ of open chains . . . . . . . . . . . . . . . . . . 91 14 Symmetry 97 14.1 Structural origins of fold symmetries . . . . . . . . . . . . . . . . 97 14.1.1 βα-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 14.1.2 ββ-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 14.1.3 αα-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 14.2 Evolutionary origins of fold symmetries .
The structural principals of proteins are reviewed and analysed from a geometric perspective with a view to revealing the underlying regularities in their construction. Computer methods for the automatic comparison and classification of these structures are then reviewed with an analysis of the statistical significance of comparing different shapes. Following an analysis of the current state of the classification of proteins, more abstract geometric and topological representations are explored, including the occurrence of knotted topologies. The review concludes with a consideration of the origin of higher-level symmetries in protein structure.
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری