Molecular and cellular signaling

Molecular and cellular signaling

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : Martin Beckerman
  • ناشر : New York : Springer
  • چاپ و سال / کشور: 2005
  • شابک / ISBN : 9780387221304

Description

Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Guide to Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Prokaryotes and Eukaryotes . . . . . . . . . . . . . . . 1 1.2 The Cytoskeleton and Extracellular Matrix . . . . . . 2 1.3 Core Cellular Functions in Organelles . . . . . . . . . 3 1.4 Metabolic Processes in Mitochondria and Chloroplasts . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Cellular DNA to Chromatin . . . . . . . . . . . . . . . 5 1.6 Protein Activities in the Endoplasmic Reticulum and Golgi Apparatus . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Digestion and Recycling of Macromolecules . . . . . . 8 1.8 Genomes of Bacteria Reveal Importance of Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.9 Organization and Signaling of Eukaryotic Cell . . . . 10 1.10 Fixed Infrastructure and the Control Layer . . . . . . 12 1.11 Eukaryotic Gene and Protein Regulation . . . . . . . 13 1.12 Signaling Malfunction Central to Human Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.13 Organization of Text . . . . . . . . . . . . . . . . . . . 16 2. The Control Layer . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Eukaryotic Chromosomes Are Built from Nucleosomes . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 The Highly Organized Interphase Nucleus . . . . . . . 23 2.3 Covalent Bonds Define the Primary Structure of a Protein . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Hydrogen Bonds Shape the Secondary Structure . . . 27 2.5 Structural Motifs and Domain Folds: Semi-Independent Protein Modules . . . . . . . . . . 29 Contents xi 2.6 Arrangement of Protein Secondary Structure Elements and Chain Topology . . . . . . . . . . . . . . 29 2.7 Tertiary Structure of a Protein: Motifs and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.8 Quaternary Structure: The Arrangement of Subunits . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.9 Many Signaling Proteins Undergo Covalent Modifications . . . . . . . . . . . . . . . . . . . . . . . 33 2.10 Anchors Enable Proteins to Attach to Membranes . . . . . . . . . . . . . . . . . . . . . . . . 34 2.11 Glycosylation Produces Mature Glycoproteins . . . . 36 2.12 Proteolytic Processing Is Widely Used in Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.13 Reversible Addition and Removal of Phosphoryl Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.14 Reversible Addition and Removal of Methyl and Acetyl Groups . . . . . . . . . . . . . . . . . . . . . . . 38 2.15 Reversible Addition and Removal of SUMO Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.16 Post-Translational Modifications to Histones . . . . . 40 3. Exploring Protein Structure and Function . . . . . . . . . . . 45 3.1 Interaction of Electromagnetic Radiation with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Biomolecule Absorption and Emission Spectra . . . . 49 3.3 Protein Structure via X-Ray Crystallography . . . . . 49 3.4 Membrane Protein 3-D Structure via Electron and Cryoelectron Crystallography . . . . . . . . . . . . . . 53 3.5 Determining Protein Structure Through NMR . . . . 53 3.6 Intrinsic Magnetic Dipole Moment of Protons and Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.7 Using Protein Fluorescence to Probe Control Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.8 Exploring Signaling with FRET . . . . . . . . . . . . . 58 3.9 Exploring Protein Structure with Circular Dichroism . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.10 Infrared and Raman Spectroscopy to Probe Vibrational States . . . . . . . . . . . . . . . . . . . . . 61 3.11 A Genetic Method for Detecting Protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . 61 3.12 DNA and Oligonucleotide Arrays Provide Information on Genes . . . . . . . . . . . . . . . . . . 62 3.13 Gel Electrophoresis of Proteins . . . . . . . . . . . . . 63 3.14 Mass Spectroscopy of Proteins . . . . . . . . . . . . . . 64 xii Contents 4. Macromolecular Forces . . . . . . . . . . . . . . . . . . . . . . 71 4.1 Amino Acids Vary in Size and Shape . . . . . . . . . . 71 4.2 Amino Acids Behavior in Aqueous Environments . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Formation of H-Bonded Atom Networks . . . . . . . 74 4.4 Forces that Stabilize Proteins . . . . . . . . . . . . . . 74 4.5 Atomic Radii of Macromolecular Forces . . . . . . . . 75 4.6 Osmophobic Forces Stabilize Stressed Cells . . . . . . 76 4.7 Protein Interfaces Aid Intra- and Intermolecular Communication . . . . . . . . . . . . . . . . . . . . . . 77 4.8 Interfaces Utilize Shape and Electrostatic Complementarity . . . . . . . . . . . . . . . . . . . . . 78 4.9 Macromolecular Forces Hold Macromolecules Together . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.10 Motion Models of Covalently Bonded Atoms . . . . . 79 4.11 Modeling van der Waals Forces . . . . . . . . . . . . . 81 4.12 Molecular Dynamics in the Study of System Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.13 Importance of Water Molecules in Cellular Function . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.14 Essential Nature of Protein Dynamics . . . . . . . . . 85 5. Protein Folding and Binding . . . . . . . . . . . . . . . . . . . 89 5.1 The First Law of Thermodynamics: Energy Is Conserved . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 Heat Flows from a Hotter to a Cooler Body . . . . . . 91 5.3 Direction of Heat Flow: Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . 92 5.4 Order-Creating Processes Occur Spontaneously as Gibbs Free Energy Decreases . . . . . . . . . . . . . . 93 5.5 Spontaneous Folding of New Proteins . . . . . . . . . 94 5.6 The Folding Process: An Energy Landscape Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Misfolded Proteins Can Cause Disease . . . . . . . . . 98 5.8 Protein Problems and Alzheimer’s Disease . . . . . . 99 5.9 Amyloid Buildup in Neurological Disorders . . . . . . 100 5.10 Molecular Chaperones Assist in Protein Folding in the Crowded Cell . . . . . . . . . . . . . . . . . . . 101 5.11 Role of Chaperonins in Protein Folding . . . . . . . . 102 5.12 Hsp 90 Chaperones Help Maintain Signal Transduction Pathways . . . . . . . . . . . . . . . . . . 103 5.13 Proteins: Dynamic, Flexible, and Ready to Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Contents xiii 6. Stress and Pheromone Responses in Yeast . . . . . . . . . . . 111 6.1 How Signaling Begins . . . . . . . . . . . . . . . . . . 112 6.2 Signaling Complexes Form in Response to Receptor-Ligand Binding . . . . . . . . . . . . . . . . . 113 6.3 Role of Protein Kinases, Phosphatases, and GTPases . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.4 Role of Proteolytic Enzymes . . . . . . . . . . . . . . . 116 6.5 End Points Are Contact Points to Fixed Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 117 6.6 Transcription Factors Combine to Alter Genes . . . . 118 6.7 Protein Kinases Are Key Signal Transducers . . . . . . 119 6.8 Kinases Often Require Second Messenger Costimulation . . . . . . . . . . . . . . . . . . . . . . . 121 6.9 Flanking Residues Direct Phosphorylation of Target Residues . . . . . . . . . . . . . . . . . . . . . . 122 6.10 Docking Sites and Substrate Specificity . . . . . . . . . 123 6.11 Protein Phosphatases Are Prominent Components of Signaling Pathways . . . . . . . . . . . . . . . . . . . . 123 6.12 Scaffold and Anchor Protein Role in Signaling and Specificity . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.13 GTPases Regulate Protein Trafficking in the Cell . . . 125 6.14 Pheromone Response Pathway Is Activated by Pheromones . . . . . . . . . . . . . . . . . . . . . . . . 125 6.15 Osmotic Stresses Activate Glycerol Response Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.16 Yeasts Have a General Stress Response . . . . . . . . 129 6.17 Target of Rapamycin (TOR) Adjusts Protein Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.18 TOR Adjusts Gene Transcription . . . . . . . . . . . . 133 6.19 Signaling Proteins Move by Diffusion . . . . . . . . . 134 7. Two-Component Signaling Systems . . . . . . . . . . . . . . . 139 7.1 Prokaryotic Signaling Pathways . . . . . . . . . . . . . 140 7.2 Catalytic Action by Histidine Kinases . . . . . . . . . 141 7.3 The Catalytic Activity of HK Occurs at the Active Site . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.4 The GHKL Superfamily . . . . . . . . . . . . . . . . . 144 7.5 Activation of Response Regulators by Phosphorylation . . . . . . . . . . . . . . . . . . . . . . 145 7.6 Response Regulators Are Switches Thrown at Transcriptional Control Points . . . . . . . . . . . . . . 146 7.7 Structure and Domain Organization of Bacterial Receptors . . . . . . . . . . . . . . . . . . . . 147 7.8 Bacterial Receptors Form Signaling Clusters . . . . . 148 xiv Contents 7.9 Bacteria with High Sensitivity and Mobility . . . . . . 149 7.10 Feedback Loop in the Chemotactic Pathway . . . . . 150 7.11 How Plants Sense and Respond to Hormones . . . . . 152 7.12 Role of Growth Plasticity in Plants . . . . . . . . . . . 154 7.13 Role of Phytochromes in Plant Cell Growth . . . . . . 154 7.14 Cryptochromes Help Regulate Circadian Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8. Organization of Signal Complexes by Lipids, Calcium, and Cyclic AMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.1 Composition of Biological Membranes . . . . . . . . . 162 8.2 Microdomains and Caveolae in Membranes . . . . . . 163 8.3 Lipid Kinases Phosphorylate Plasma Membrane Phosphoglycerides . . . . . . . . . . . . . . . . . . . . . 165 8.4 Generation of Lipid Second Messengers from PIP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8.5 Regulation of Cellular Processes by PI3K . . . . . . . 167 8.6 PIPs Regulate Lipid Signaling . . . . . . . . . . . . . . 168 8.7 Role of Lipid-Binding Domains . . . . . . . . . . . . . 169 8.8 Role of Intracellular Calcium Level Elevations . . . . 170 8.9 Role of Calmodulin in Signaling . . . . . . . . . . . . . 171 8.10 Adenylyl Cyclases and Phosphodiesterases Produce and Regulate cAMP Second Messengers . . . . . . . . 172 8.11 Second Messengers Activate Certain Serine/ Threonine Kinases . . . . . . . . . . . . . . . . . . . . 173 8.12 Lipids and Upstream Kinases Activate PKB . . . . . . 174 8.13 PKB Supplies a Signal Necessary for Cell Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.14 Phospholipids and Ca2+ Activate Protein Kinase C . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.15 Anchoring Proteins Help Localize PKA and PKC Near Substrates . . . . . . . . . . . . . . . . . . . . . . 178 8.16 PKC Regulates Response of Cardiac Cells to Oxygen Deprivation . . . . . . . . . . . . . . . . . . . 179 8.17 cAMP Activates PKA,Which Regulates Ion Channel Activities . . . . . . . . . . . . . . . . . . . . . 180 8.18 PKs Facilitate the Transfer of Phosphoryl Groups from ATPs to Substrates . . . . . . . . . . . . . . . . . 182 9. Signaling by Cells of the Immune System . . . . . . . . . . . . 187 9.1 Leukocytes Mediate Immune Responses . . . . . . . . 188 9.2 Leukocytes Signal One Another Using Cytokines . . . . . . . . . . . . . . . . . . . . . . . . . . 190 9.3 APC and Naïve T Cell Signals Guide Differentiation into Helper T Cells . . . . . . . . . . . 192 Contents xv 9.4 Five Families of Cytokines and Cytokine Receptors . . . . . . . . . . . . . . . . . . . . . . . . . 193 9.5 Role of NF-kB/Rel in Adaptive Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . 194 9.6 Role of MAP Kinase Modules in Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . 196 9.7 Role of TRAF and DD Adapters . . . . . . . . . . . . 196 9.8 Toll/IL-1R Pathway Mediates Innate Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . 198 9.9 TNF Family Mediates Homeostasis, Death, and Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.10 Role of Hematopoietin and Related Receptors . . . . 200 9.11 Role of Human Growth Hormone Cytokine . . . . . . 202 9.12 Signal-Transducing Jaks and STATs . . . . . . . . . . . 203 9.13 Interferon System: First Line of Host Defense in Mammals Against Virus Attacks . . . . . . . . . . . . . 205 9.14 Chemokines Provide Navigational Cues for Leukocytes . . . . . . . . . . . . . . . . . . . . . . . . . 206 9.15 B and T Cell Receptors Recognize Antigens . . . . . 207 9.16 MHCs Present Antigens on the Cell Surface . . . . . 208 9.17 Antigen-Recognizing Receptors Form Signaling Complexes with Coreceptors . . . . . . . . . . . . . . 209 9.18 Costimulatory Signals Between APCs and T Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.19 Role of Lymphocyte-Signaling Molecules . . . . . . . 212 9.20 Kinetic Proofreading and Serial Triggering of TCRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10. Cell Adhesion and Motility . . . . . . . . . . . . . . . . . . . . 221 10.1 Cell Adhesion Receptors: Long Highly Modular Glycoproteins . . . . . . . . . . . . . . . . . . . . . . . 221 10.2 Integrins as Bidirectional Signaling Receptors . . . . . 223 10.3 Role of Leukocyte-Specific Integrin . . . . . . . . . . 224 10.4 Most Integrins Bind to Proteins Belonging to the ECM . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10.5 Cadherins Are Present in Most Cells of the Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 10.6 IgCAMs Mediate Cell–Cell and Cell–ECM Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . 228 10.7 Selectins Are CAMs Involved in Leukocyte Motility . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 10.8 Leukocytes Roll, Adhere, and Crawl to Reach the Site of an Infection . . . . . . . . . . . . . . . . . . 230 10.9 Bonds Form and Break During Leukocyte Rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 xvi Contents 10.10 Bond Dissociation of Rolling Leukocyte as Seen in Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.11 Slip and Catch Bonds Between Selectins and Their Carbohydrate Ligands . . . . . . . . . . . . . . . 233 10.12 Development in Central Nervous System . . . . . . . 234 10.13 Diffusible, Anchored, and Membrane-Bound Glycoproteins in Neurite Outgrowth . . . . . . . . . . 235 10.14 Growth Cone Navigation Mechanisms . . . . . . . . . 236 10.15 Molecular Marking by Concentration Gradients of Netrins and Slits . . . . . . . . . . . . . . . . . . . . . . 237 10.16 How Semaphorins, Scatter Factors, and Their Receptors Control Invasive Growth . . . . . . . . . . 239 10.17 Ephrins and Their Eph Receptors Mediate Contact-Dependent Repulsion . . . . . . . . . . . . . 239 11. Signaling in the Endocrine System . . . . . . . . . . . . . . . . 247 11.1 Five Modes of Cell-to-Cell Signaling . . . . . . . . . . 248 11.2 Role of Growth Factors in Angiogenesis . . . . . . . . 249 11.3 Role of EGF Family in Wound Healing . . . . . . . . 250 11.4 Neurotrophins Control Neuron Growth, Differentiation, and Survival . . . . . . . . . . . . . . . 251 11.5 Role of Receptor Tyrosine Kinases in Signal Transduction . . . . . . . . . . . . . . . . . . . . . . . . 252 11.6 Phosphoprotein Recognition Modules Utilized Widely in Signaling Pathways . . . . . . . . . . . . . . . . . . . 254 11.7 Modules that Recognize Proline-Rich Sequences Utilized Widely in Signaling Pathways . . . . . . . . . 256 11.8 Protein–Protein Interaction Domains Utilized Widely in Signaling Pathways . . . . . . . . . . . . . . . . . . . 256 11.9 Non-RTKs Central in Metazoan Signaling Processes and Appear in Many Pathways . . . . . . . . . . . . . 258 11.10 Src Is a Representative NRTK . . . . . . . . . . . . . 259 11.11 Roles of Focal Adhesion Kinase Family of NRTKs . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 11.12 GTPases Are Essential Regulators of Cellular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 262 11.13 Signaling by Ras GTPases from Plasma Membrane and Golgi . . . . . . . . . . . . . . . . . . . . . . . . . . 263 11.14 GTPases Cycle Between GTP- and GDP-Bound States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.15 Role of Rho, Rac, and Cdc42, and Their Isoforms . . . 266 11.16 Ran Family Coordinates Traffic In and Out of the Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 11.17 Rab and ARF Families Mediate the Transport of Cargo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 Contents xvii 12. Signaling in the Endocrine and Nervous Systems Through GPCRs . . . . . . . . . . . . . . . . . . . . . . . . . . 275 12.1 GPCRs Classification Criteria . . . . . . . . . . . . . . 276 12.2 Study of Rhodopsin GPCR with Cryoelectron Microscopy and X-Ray Crystallography . . . . . . . . 278 12.3 Subunits of Heterotrimeric G Proteins . . . . . . . . . 279 12.4 The Four Families of Ga Subunits . . . . . . . . . . . . 280 12.5 Adenylyl Cyclases and Phosphodiesterases Key to Second Messenger Signaling . . . . . . . . . . . . . . . 281 12.6 Desensitization Strategy of G Proteins to Maintain Responsiveness to Environment . . . . . . . . . . . . . 282 12.7 GPCRs Are Internalized, and Then Recycled or Degraded . . . . . . . . . . . . . . . . . . . . . . . . . . 284 12.8 Hormone-Sending and Receiving Glands . . . . . . . 285 12.9 Functions of Signaling Molecules . . . . . . . . . . . . 288 12.10 Neuromodulators Influence Emotions, Cognition, Pain, and Feeling Well . . . . . . . . . . . . . . . . . . 289 12.11 Ill Effects of Improper Dopamine Levels . . . . . . . 291 12.12 Inadequate Serotonin Levels Underlie Mood Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . 292 12.13 GPCRs’ Role in the Somatosensory System Responsible for Sense of Touch and Nociception . . . . . . . . . . . . . . . . . . . . . . . . 292 12.14 Substances that Regulate Pain and Fever Responses . . . . . . . . . . . . . . . . . . . . . . . . . 293 12.15 Composition of Rhodopsin Photoreceptor . . . . . . . 295 12.16 How G Proteins Regulate Ion Channels . . . . . . . . 297 12.17 GPCRs Transduce Signals Conveyed by Odorants . . . . . . . . . . . . . . . . . . . . . . . . . . 297 12.18 GPCRs and Ion Channels Respond to Tastants . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 13. Cell Fate and Polarity . . . . . . . . . . . . . . . . . . . . . . . 305 13.1 Notch Signaling Mediates Cell Fate Decision . . . . . 306 13.2 How Cell Fate Decisions Are Mediated . . . . . . . . 307 13.3 Proteolytic Processing of Key Signaling Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 308 13.4 Three Components of TGF-b Signaling . . . . . . . . 311 13.5 Smad Proteins Convey TGF-b Signals into the Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 13.6 Multiple Wnt Signaling Pathways Guide Embryonic Development . . . . . . . . . . . . . . . . . . . . . . . 314 13.7 Role of Noncanonical Wnt Pathway . . . . . . . . . . 317 13.8 Hedgehog Signaling Role During Development . . . . 317 13.9 Gli Receives Hh Signals . . . . . . . . . . . . . . . . . 318 xviii Contents 13.10 Stages of Embryonic Development Use Morphogens . . . . . . . . . . . . . . . . . . . . . . . . 320 13.11 Gene Family Hierarchy of Cell Fate Determinants in Drosophila . . . . . . . . . . . . . . . . . . . . . . . . . 321 13.12 Egg Development in D. Melanogaster . . . . . . . . . 322 13.13 Gap Genes Help Partition the Body into Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 13.14 Pair-Rule Genes Partition the Body into Segments . . . . . . . . . . . . . . . . . . . . . . . . . . 324 13.15 Segment Polarity Genes Guide Parasegment Development . . . . . . . . . . . . . . . . . . . . . . . 325 13.16 Hox Genes Guide Patterning in Axially Symmetric Animals . . . . . . . . . . . . . . . . . . . . . . . . . . 326 14. Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 14.1 Several Critical Mutations Generate a Transformed Cell . . . . . . . . . . . . . . . . . . . . . 332 14.2 Ras Switch Sticks to “On” Under Certain Mutations . . . . . . . . . . . . . . . . . . . . . . . . . 334 14.3 Crucial Regulatory Sequence Missing in Oncogenic Forms of Src . . . . . . . . . . . . . . . . . . . . . . . . 336 14.4 Overexpressed GFRs Spontaneously Dimerize in Many Cancers . . . . . . . . . . . . . . . . . . . . . . . 336 14.5 GFRs and Adhesion Molecules Cooperate to Promote Tumor Growth . . . . . . . . . . . . . . . . . 337 14.6 Role of Mutated Forms of Proteins in Cancer Development . . . . . . . . . . . . . . . . . . . . . . . 338 14.7 Translocated and Fused Genes Are Present in Leukemias . . . . . . . . . . . . . . . . . . . . . . . . . 339 14.8 Repair of DNA Damage . . . . . . . . . . . . . . . . . 340 14.9 Double-Strand-Break Repair Machinery . . . . . . . . 342 14.10 How Breast Cancer (BRCA) Proteins Interact with DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 14.11 PI3K Superfamily Members that Recognize Double-Strand Breaks . . . . . . . . . . . . . . . . . . 345 14.12 Checkpoints Regulate Transition Events in a Network . . . . . . . . . . . . . . . . . . . . . . . . . . 346 14.13 Cyclin-Dependent Kinases Form the Core of Cell-Cycle Control System . . . . . . . . . . . . . . . . 347 14.14 pRb Regulates Cell Cycle in Response to Mitogenic Signals . . . . . . . . . . . . . . . . . . . . . 347 14.15 p53 Halts Cell Cycle While DNA Repairs Are Made . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 14.16 p53 and pRb Controllers Central to Metazoan Cancer Prevention Program . . . . . . . . . . . . . . . 350 Contents xix 14.17 p53 Structure Supports Its Role as a Central Controller . . . . . . . . . . . . . . . . . . . . . . . . . 352 14.18 Telomerase Production in Cancer Cells . . . . . . . . . 354 15. Apoptosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 15.1 Caspases and Bcl-2 Proteins Are Key Mediators of Apoptosis . . . . . . . . . . . . . . . . . . . . . . . . . 360 15.2 Caspases Are Proteolytic Enzymes Synthesized as Inactive Zymogens . . . . . . . . . . . . . . . . . . . . 361 15.3 Caspases Are Initiators and Executioners of Apoptosis Programs . . . . . . . . . . . . . . . . . . . 362 15.4 There Are Three Kinds of Bcl-2 Proteins . . . . . . . . 363 15.5 How Caspases Are Activated . . . . . . . . . . . . . . 365 15.6 Cell-to-Cell Signals Stimulate Formation of the DISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 15.7 Death Signals Are Conveyed by the Caspase 8 Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . 367 15.8 How Pro- and Antiapoptotic Signals Are Relayed . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 15.9 Bcl-2 Proteins Regulate Mitochondrial Membrane Permeability . . . . . . . . . . . . . . . . . . . . . . . . 369 15.10 Mitochondria Release Cytochrome c in Response to Oxidative Stresses . . . . . . . . . . . . . . . . . . . . . 371 15.11 Mitochondria Release Apoptosis-Promoting Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 15.12 Role of Apoptosome in (Mitochondrial Pathway to) Apoptosis . . . . . . . . . . . . . . . . . . . . . . . . . 373 15.13 Inhibitors of Apoptosis Proteins Regulate Caspase Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 15.14 Smac/DIABLO and Omi/HtrA2 Regulate IAPs . . . 375 15.15 Feedback Loops Coordinate Actions at Various Control Points . . . . . . . . . . . . . . . . . . . . . . . 375 15.16 Cells Can Produce Several Different Kinds of Calcium Signals . . . . . . . . . . . . . . . . . . . . . . 376 15.17 Excessive [Ca2+] in Mitochondria Can Trigger Apoptosis . . . . . . . . . . . . . . . . . . . . . . . . . 377 15.18 p53 Promotes Cell Death in Response to Irreparable DNA Damage . . . . . . . . . . . . . . . . . . . . . . . 378 15.19 Anti-Cancer Drugs Target the Cell’s Apoptosis Machinery . . . . . . . . . . . . . . . . . . . . . . . . . 379 16. Gene Regulation in Eukaryotes . . . . . . . . . . . . . . . . . 385 16.1 Organization of the Gene Regulatory Region . . . . . 386 16.2 How Promoters Regulate Genes . . . . . . . . . . . . 387 16.3 TFs Bind DNA Through Their DNA-Binding Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 389 xx Contents 16.4 Transcriptional Activation Domains Initiate Transcription . . . . . . . . . . . . . . . . . . . . . . . . 392 16.5 Nuclear Hormone Receptors Are Transcription Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 16.6 Composition and Structure of the Basal Transcription Machinery . . . . . . . . . . . . . . . . . 393 16.7 RNAP II Is Core Module of the Transcription Machinery . . . . . . . . . . . . . . . . . . . . . . . . . 394 16.8 Regulation by Chromatin-Modifying Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . 395 16.9 Multiprotein Complex Use of Energy of ATP Hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . 397 16.10 Protein Complexes Act as Interfaces Between TFs and RNAP II . . . . . . . . . . . . . . . . . . . . . 398 16.11 Alternative Splicing to Generate Multiple Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 16.12 Pre-Messenger RNA Molecules Contain Splice Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 16.13 Small Nuclear RNAs (snRNAs) . . . . . . . . . . . . . 401 16.14 How Exon Splices Are Determined . . . . . . . . . . . 403 16.15 Translation Initiation Factors Regulate Start of Translation . . . . . . . . . . . . . . . . . . . . . . . . . 404 16.16 eIF2 Interfaces Upstream Regulatory Signals and the Ribosomal Machinery . . . . . . . . . . . . . . . . 406 16.17 Critical Control Points for Protein Synthesis . . . . . . 407 17. Cell Regulation in Bacteria . . . . . . . . . . . . . . . . . . . . 411 17.1 Cell Regulation in Bacteria Occurs Primarily at Transcription Level . . . . . . . . . . . . . . . . . . . . 412 17.2 Transcription Is Initiated by RNAP Holoenzymes . . . . . . . . . . . . . . . . . . . . . . . 412 17.3 Sigma Factors Bind to Regulatory Sequences in Promoters . . . . . . . . . . . . . . . . . . . . . . . . . 414 17.4 Bacteria Utilize Sigma Factors to Make Major Changes in Gene Expression . . . . . . . . . . . . . . 414 17.5 Mechanism of Bacterial Transcription Factors . . . . . 416 17.6 Many TFs Function as Response Regulators . . . . . . 417 17.7 Organization of Protein-Encoding Regions and Their Regulatory Sequences . . . . . . . . . . . . . . . 418 17.8 The Lac Operon Helps Control Metabolism in E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 17.9 Flagellar Motors Are Erected in Several Stages . . . . 421 17.10 Under Starvation Conditions, B. subtilis Undergoes Sporulation . . . . . . . . . . . . . . . . . . . . . . . . . 422 17.11 Cell-Cycle Progression and Differentiation in C. crescentus . . . . . . . . . . . . . . . . . . . . . . . . 424 Contents xxi xxii Contents 17.12 Antigenic Variation Counters Adaptive Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . 426 17.13 Bacteria Organize into Communities When Nutrient Conditions Are Favorable . . . . . . . . . . . . . . . . 426 17.14 Quorum Sensing Plays a Key Role in Establishing a Colony . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 17.15 Bacteria Form Associations with Other Bacteria on Exposed Surfaces . . . . . . . . . . . . . . . . . . . . . 430 17.16 Horizontal Gene Transfer (HGT) . . . . . . . . . . . . 430 17.17 Pathogenic Species Possess Virulence Cassettes . . . . 431 17.18 Bacterial Death Modules . . . . . . . . . . . . . . . . . 433 17.19 Myxobacteria Exhibit Two Distinct Forms of Social Behavior . . . . . . . . . . . . . . . . . . . . . . 434 17.20 Structure Formation by Heterocystous Cyanobacteria . . . . . . . . . . . . . . . . . . . . . . . 435 17.21 Rhizobia Communicate and Form Symbiotic Associations with Legumes . . . . . . . . . . . . . . . 436 18. Regulation by Viruses . . . . . . . . . . . . . . . . . . . . . . . 441 18.1 How Viruses Enter Their Host Cells . . . . . . . . . . 442 18.2 Viruses Enter and Exit the Nucleus in Several Ways . . . . . . . . . . . . . . . . . . . . . . . . 442 18.3 Ways that Viruses Exit a Cell . . . . . . . . . . . . . . 443 18.4 Viruses Produce a Variety of Disorders in Humans . . . . . . . . . . . . . . . . . . . . . . . . . . 444 18.5 Virus–Host Interactions Underlie Virus Survival and Proliferation . . . . . . . . . . . . . . . . . . . . . . . . 445 18.6 Multilayered Defenses Are Balanced by Multilayered Attacks . . . . . . . . . . . . . . . . . . . 446 18.7 Viruses Target TNF Family of Cytokines . . . . . . . . 447 18.8 Hepatitis C Virus Disables Host Cell’s Interferon System . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 18.9 Human T Lymphotropic Virus Type 1 Can Cause Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 18.10 DNA and RNA Viruses that Can Cause Cancer . . . 450 18.11 HIV Is a Retrovirus . . . . . . . . . . . . . . . . . . . . 452 18.12 Role of gp120 Envelope Protein in HIV . . . . . . . . 453 18.13 Early-Acting tat, rev, and nef Regulatory Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 18.14 Late-Acting vpr, vif, vpu, and vpx Regulatory Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 18.15 Bacteriophages’ Two Lifestyles: Lytic and Lysogenic . . . . . . . . . . . . . . . . . . . . . . . . . . 457 18.16 Deciding Between Lytic and Lysogenic Lifestyles . . . 458 18.17 Encoding of Shiga Toxin in E. coli . . . . . . . . . . . 459 19. Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 19.1 How Membrane Potentials Arise . . . . . . . . . . . . 466 19.2 Membrane and Action Potentials Have Regenerative Properties . . . . . . . . . . . . . . . . . . . . . . . . . 468 19.3 Hodgkin–Huxley Equations Describe How Action Potentials Arise . . . . . . . . . . . . . . . . . . . . . . 470 19.4 Ion Channels Have Gates that Open and Close . . . . 472 19.5 Families of Ion Channels Expressed in Plasma Membrane of Neurons . . . . . . . . . . . . . . . . . . 474 19.6 Assembly of Ion Channels . . . . . . . . . . . . . . . . 476 19.7 Design and Function of Ion Channels . . . . . . . . . 478 19.8 Gates and Filters in Potassium Channels . . . . . . . . 478 19.9 Voltage-Gated Chloride Channels Form a Double-Barreled Pore . . . . . . . . . . . . . . . . . . 479 19.10 Nicotinic Acetylcholine Receptors Are Ligand-Gated Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . 480 19.11 Operation of Glutamate Receptor Ion Channels . . . 483 20. Neural Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . 487 20.1 Heartbeat Is Generated by Pacemaker Cells . . . . . 487 20.2 HCN Channels’ Role in Pacemaker Activities . . . . . 489 20.3 Synchronous Activity in the Central Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 20.4 Role of Low Voltage-Activated Calcium Channels . . . . 492 20.5 Neuromodulators Modify the Activities of Voltage-Gated Ion Channels . . . . . . . . . . . . . . . 494 20.6 Gap Junctions Formed by Connexins Mediate Rapid Signaling Between Cells . . . . . . . . . . . . . 495 20.7 Synchronization of Neural Firing . . . . . . . . . . . . 497 20.8 How Spindling Patterns Are Generated . . . . . . . . 498 20.9 Epileptic Seizures and Abnormal Brain Rhythms . . . 498 20.10 Swimming and Digestive Rhythms in Lower Vertebrates . . . . . . . . . . . . . . . . . . . . . . . . . 499 20.11 CPGs Have a Number of Common Features . . . . . 502 20.12 Neural Circuits Are Connected to Other Circuits and Form Systems . . . . . . . . . . . . . . . . . . . . . . . 504 20.13 A Variety of Neuromodulators Regulate Operation of the Crustacean STG . . . . . . . . . . . . . . . . . . 505 20.14 Motor Systems Adapt to Their Environment and Learn . . . . . . . . . . . . . . . . . . . . . . . . .
"Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduate students, graduate students, and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases arise when these regulatory systems malfunction, as well as those in chemistry, physics, and computer science interested in pursuing careers in biological and medical physics, bioinformatics, and systems biology." "The book includes background information and review sections, and chapters on signaling in the immune, endocrine (hormonal), and nervous systems. It has chapters on cancer, apoptosis, and gene regulation, and contains chapters on bacteria and viruses. In those chapters not specifically devoted to pathogens, connections between diseases, drugs, and signaling are made. Each chapter also features a problem set to facilitate further discussion and understanding."--Jacket
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری