High pressure process technology : fundamentals and applications 1st ed

High pressure process technology : fundamentals and applications 1st ed

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : A Bertucco; Gerhard Vetter
  • ناشر : Amsterdam ; New York : Elsevier
  • چاپ و سال / کشور: 2001
  • شابک / ISBN : 9780444504982

Description

CONTENTS Preface Contents List of Contributors l o 1.1 1.2 1.3 1.4 Introduction High pressure definitions and examples in nature Early historical roots of high pressure technology High pressure technology today - motivations for using high pressure High pressure technology today- application survey and examples References o 2.1 2.2 2.2.1 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 2.2.2.1 2.2.2.2 2.3 2.3.1 2.3.2 2.3.2.1 2.3.2.2 2.3.3 2.3.4 2.3.4.1 2.4 2.4.1 Thermodynamic properties at high pressure Introduction Phase equilibria Principles of phase equilibria The Chemical potential and the phase rule of Gibbs Fugacity and activity Critical phenomena Classification of phase equilibria Fluid phase equilibria Phase equilibria with the presence of solid phases Calculation of high-pressure phase equilibria Bubble point-, dew point- and flash calculations Equations of state Cubic equations of state Non-cubic equations of state Solubility of solids in Supercritical Fluids Polymer systems Glassy polymers Chemical reaction equilibria Homogeneous gas reactions ix xxi 1 2 2 3 4 15 17 18 18 18 18 19 21 24 26 31 34 35 39 40 45 46 49 51 53 55 2.4.2 Heterogeneous reactions 2.5 Experimental methods 2.5.1 Vapour-Liquid equilibria 2.5.2 Equilibria involving solids References . 3.1 3.2 3.2.1 3.2.2 3.2.2.1 3.2.2.2 3.2.3 3.2.3.1 3.2.3.2 3.2.3.3 3.2.3.4 3.2.3.5 3.2.3.6 3.2.4 3.2.5 3.2.6 3.2.7 Kinetic properties at high pressure Interesting features at high pressure Kinetics of high-pressure reactions Molecular theory of reaction rate constants Activation volume Terms contributing to AVR ~ Terms contributing to Avs # Evaluation of the activation volume from experimental data Single homogeneous reactions Parallel reactions Reactions in series Chain reactions Heterogeneous catalytic reactions Reactions influenced by mass transport Prediction of the activation volume Activation volume as a tool for the elucidation of reaction mechanism Change of reaction rate constant with pressure Problems 3.3 Measurement of chemical kinetic data at high pressure 3.3.1 Measurement of reaction rates 3.3.2 Examples References of sections 3.1, 3.2, 3.3 3.4 3.4.1 3.4.2 3.4.2.1 3.4.2.2 3.4.2.3 3.4.2.4 3.4.2.5 3.4.3 3.4.3.1 Transport properties Fundamentals Estimation of transport properties Viscosity Diffusivity in dense gases Binary diffusivity data in different media Thermal conductivity Surface tension Heat transfer mechanisms in dense fluids: calculation of heat-transfer coefficients in different arrangements Single phase convective heat transfer 56 57 58 59 60 65 66 67 67 70 70 71 72 72 73 73 74 75 77 78 79 80 81 82 82 87 91 92 92 97 97 100 100 102 104 106 106 xi 3.4.3.2 3.4.3.3 3.4.3.4 3.4.4 3.4.4.1 3.4.4.2 3.4.5 3.4.6 Condensation Boiling Overall heat-transfer coefficient for exchangers Mass transfer mechanisms in dense fluids External mass transfer Internal mass transfer Mass transfer models Numerical examples References of section 3.4 0 4.1 4.1.1 4.1.2 4.1.3 4.1.3.1 4.1.3.2 4.1.3.3 4.1.4 4.1.4.1 4.1.4.2 4.1.5 4.1.5.1 4.1.5.2 4.2 4.2.1 4.2.2 4.2.3 Design and construction of high pressure equipment for research and production High pressure machinery Requirements and design concepts Generation of pressure with pumps and compressors Pumps Reciprocating displacement pumps Rotary displacement pumps Centrifugal pumps Compressors Piston compressors Turbo compressors Special problems involving high-pressure machinery Strength of the components Seals High-pressure piping equipment Tubing and fittings Isolation and control valves Safety valves and other devices References of sections 4.1 and 4.2 4.2 4.3.1 4.3.1.1 4.3.1.2 4.3.1.3 4.3.1.4 4.3.2 4.3.2.1 4.3.2.2 4.3.2.3 High-pressure vessels and other components Calculation of vessels and components The hollow cylinder under static loading Strengthening the thick-walled hollow cylinder under static loading Influence of temperature gradients on design End pieces side-holes and surface influence Materials Typical materials for apparatus and other equipment Corrosion-resisting materials H2-attack at elevated temperatures: Nelson diagram 110 112 113 114 114 123 126 133 139 141 142 142 143 147 148 155 157 163 164 169 172 172 180 190 190 195 198 199 201 201 203 206 210 211 213 213 214 215 x n 4.3.2.4 4.3.2.5 4.3.3 4.3.3.1 4.3.3.2 4.3.3.3 4.3.3.4 4.3.3.5 4.3.4 4.3.4.1 4.3.4.2 4.3.4.3 4.3.4.4 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Corrosion by carbon monoxide Nitriding by ammonia Vessels and other apparatus Thick-walled vessels Multiwall vessels Closures and sealings Design details - corrosion-protecting of inner surfaces Heat exchangers and others Laboratory-scale units Reactors Optical cells Other devices Small-scale high-pressure plants Instrumentation of high pressure facilities Pressure measurement Temperature measurement Flow measurement Level measurement References of sections 4.3 and 4.4 , 5.1 5.1.1 5.1.2 5.1.3 5.1.4 Industrial reaction units Reactors for homogeneous reactions Polymerization of ethylene Tubular reactor Autoclave reactors Conclusions References 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2.1 5.2.2.2 5.2.2.3 5.2.2.4 5.2.2.5 5.2.2.6 Hydrodynamics and mass transfer in fixed-bed gas-liquid-solid reactors operating at high pressure Countercurrent gas-liquid flow in solid fixed-bed columns Hydrodynamics in countercurrent fixed beds Mass transfer in countercurrent fixed beds Cocurrent gas-liquid downflow fixed-bed reactors" Trickle-Bed Reactors (TBR) Flow regimes Flow charts Models for the hydrodynamics of TBR Two-phase pressure drop Liquid hold-up Gas-liquid interfacial area 215 216 216 216 218 221 223 226 228 228 230 233 234 235 235 237 238 240 241 243 244 244 248 250 253 253 255 255 256 257 257 261 262 265 274 282 288 Xllll 5.2.2.7 Liquid-side mass-transfer coefficient 5.2.2.8 Gas-side mass-transfer coefficient 5.2.3 Some examples of industrial applications of gas-liquid-solid fixed beds 5.2.3.1 Hydrodesulfurization process 5.2.3.2 Hydro-isomerization selective hydrogenation 5.2.3.3 Manufacture ofcyclohexane 5.2.4 Conclusion References 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.6.1 5.3.6.2 5.3.7 5.3.7.1 5.3.7.2 5.3.8 Slurry catalytic reactors Introduction Processes carried out in slurry catalytic reactors Process design issues Interphase mass transfer and kinetics Mechanically agitated tanks and three-phase sparged reactors Design of bubble slurry column reactors (BSCR) Hydrodynamic characteristics of BSCR Design models for slurry bubble reactors Scale-up of slurry catalytic reactors Scale-up of mechanically stirred reactors (MSSR) Scale-up of BSCR Examples References 5.4 Catalytic reactors for olefin polymerizations 5.4.1 History, catalysts, polymers and process elements 5.4.2 Fundamentals of modelling 5.4.2.1 Modelling of polymerization kinetics 5.4.2.2 Modelling of the molecular weight distribution 5.4.2.3 Single particle modelling 5.4.3 The SPHERIPOL process References o 6.1 6.1.1 6.1.2 6.1.3 6.1.3.1 6.1.3.2 6.1.3.3 Separation operations and equipment Pressure distillation Introduction Examples of pressure distillation Interphase mass transfer and two-film theory Two-film theory for distillation and dilute systems Two-film theory for concentrate systems Additivity of resistances 293 294 294 295 296 298 299 299 303 303 303 306 307 310 319 319 327 328 328 330 331 335 337 337 342 342 345 346 348 350 351 352 352 353 354 354 358 360 xiv 6.1.4 6.1.4.1 6.1.4.2 6.1.4.3 6.1.4.4 6.1.5 6.2 6.2.1 6.2.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 6.5 Transfer Unit concept HTU=Height equivalent to one transfer unit HETP=Height equivalent to one theoretical plate NTU=Number of transfer units Efficiency Effects of the total pressure Packed towers: random and structured packings Maximun column capacity Efficiency Tray columns Flow regimes Downcomer flooding and flooding Liquid residence time Liquid velocity Downcomer backup Tray efficiency Trays or packings? Conclusions for pressure distillation References of sections 6.1, 6.2, 6.3, 6.4, 6.5 6.6 6.6.1 6.6.2 6.6.2.1 6.6.2.2 6.6.2.3 6.6.2.4 6.6.2.5 6.6.3 6.6.4 6.6.5 Extraction from solids Fundamentals Design criteria Specific basic data Thermodynamic conditions Mass transfer Process optimization by means of the T-S diagram Separation of dissolved substances Cascade operation and multi-step separation Main applications Specific application processes References of section 6.6 6.7 6.7.1 6.7.2 6.7.2.1 6.7.2.2 6.7.2.3 6.7.3 Extraction from liquid mixtures Introduction Operation methods Single-stage extraction Multistage cross-flow extraction Multistage countercurrent extraction Modelling of countercurrent high pressure extraction 361 361 362 362 365 367 368 368 370 371 371 371 372 372 373 374 374 375 376 378 378 382 382 385 386 387 390 390 392 393 394 396 396 396 396 397 398 400 XV 6.7.4 6.7.4.1 6 9 6 9 6.7.4.4 6.7.5 Types of extraction columns Extraction columns without internals Plate columns Packed columns Columns with energy input Applications References of section 6.7 o 7.1 7.1 7.1 7.1 7.1 7.1 Safety and control in high pressure plant design and operation General safety aspects in high-pressure facilities 91 Safety aspects in design and operation .2 Safety aspects due to changing properties with high pressure .3 Protective design and construction .4 Design criteria of buildings .5 Plant operation 7.1.6 Testing procedures and inspections References 7.2 Runaway of polyethylene reactors 7.2.1 General remarks 7.2.2 Decomposition reaction 7.2.3 Critical conditions 7.2.3 9 Homopolymerization 7.2.3.2 Influence of co-monomers 7.2 9 Influence of oxygen 7.2.3.4 Influence of decomposition sensitizers 7.2.4 Increase of pressure and temperature during decomposition 7.2.5 Loss prevention 7.2.5 9 Relief devices 7.2.5.2 Venting systems References 7.3 Safety in high-pressure extraction plants 7.3.1 Protection of individual pressure ranges 7.3.2 Use of safety valves and rupture discs 7.3.3 Interlocking systems 7.3.4 Safety analysis 7.3.5 Controls and computerized systems References 400 400 400 401 402 402 402 4O5 406 406 408 411 414 418 419 420 421 421 421 423 423 423 424 425 426 427 427 428 429 430 431 433 434 434 435 435 xvi So 8.1 8.1.1 8.1.1.1 8.1.1.2 8.1.1.3 8.1.2 8.1.3 8.1.4 Economics of high pressure processes High-pressure extraction plants Description of standardized units Laboratory units Medium scale units Large scale units Feasibility studies Influence of design Influence of process parameters 8.1.5 Influence of financing References 8.2 High-pressure polymerization of ethylene 8.2.1 Consumption of polyethylene in Western Europe 8.2.2 General remarks 8.2.3 Capital costs 8.2.4 Production costs and total costs 8.2.5 Sensitivity analysis 8.2.6 Comparison of economics of high- and low-pressure process References 8.3 Precipitation by Supercritical Anti-solvent 8.3.1 Rationale 8.3.2 Process description 8.3.3 Process simulation 8.3.4 Capital cost evaluation 8.3.5 Manufacturing cost evaluation 8.3.6 Cash-flow analysis 8.3.7 Conclusions References . 9.1 9.1 9.1 9.1 9.1 9.1 9.1 Applications Chemical reactions in Supercritical Solvents (SCFs) .1 Introduction .2 SCFs as reactants .3 SCFs as catalysts .4 SCFs as solvents .5 SCFs as a tool for product separation .6 Reactions involving gases 437 438 438 438 439 439 440 440 445 450 452 453 453 454 454 455 457 458 459 460 460 460 461 465 465 469 470 471 473 474 474 474 475 476 477 479 XVll 9.1.7 Continuous organic reactions 9.1.8 Future developments References 9.2 9.2.1 9.2.2 9.2.2.1 9.2.2.2 9.2.2.3 9.2.2.4 9.2.2.5 9.2.2.6 9.2.3 9.2.3.1 9.2.3.2 9.2.4 Enzymatic reactions Introduction Enzymes Enzyme stability in supercritical fluids Effect of water activity Effect of pressure Effect of temperature Number of pressurization-depressurization steps Inhibition of enzymes Enzyme reactors Process schemes and downstream processing schemes Processing costs Conclusions References 9.3 9.3.1 9.3.2 9.3.2.1 9.3.2.2 9.3.2.3 9.3.3 9.3.3.1 9.3.3.2 9.3.3.3 9.3.3.4 9.3.3.5 Hydrogenation under supercritical single-phase conditions Introduction Traditional hydrogenation processes Gas-phase hydrogenation Gas-liquid hydrogenation Important process parameters The supercritical single-phase hydrogenation Single-phase conditions Measurement of phase behavior in complex reaction mixtures Connecting the different reaction systems Impact of using supercritical single-phase hydrogenation technology Outlook References 9.4 9.4.1 9.4.2 9.4.2.1 9.4.2.2 9.4.2.3 9.4.3 9.4.3.1 9.4.3.2 Supercritical Water Oxidation (SCWO). Application to industrial wastewater treatment Introduction Supercritical water as a reaction media Physical properties of supercritical water Oxidation reactions in SCWO Catalysis SCWO process description Feed preparation and pressurization Reaction 481 482 483 486 486 487 487 487 488 488 488 489 490 490 492 493 494 496 496 497 497 498 499 502 502 504 504 505 506 506 509 509 510 510 511 511 511 511 512 XVlll 9.4.3.3 9.4.4 9.4.4.1 9.4.4.2 9.4.4.3 9.4.4.4 9.4.5 9.4.5.1 9.4.5.2 9.4.6 9.4.6.1 9.4.6.2 9.4.6.3 9.4.6.4 Cooling and heat recovery Design considerations Reactor configuration Materials of construction Solids separation Heat exchangers Other oxidation processes of wastewater at high pressure Wet-air oxidation Deep-shaft wet-air oxidation SCWO applications to wastewater treatment Pilot-plant operations Example of operation with an industrial waste: cutting oil waste Commercial process Economic features References 9.5 High pressure polymerisation with metallocene catalysts 9.5.1 Advantages of high-pressure polymerization with metallocenes 9.5.2 Catalyst and co-catalyst 9.5.3 Reaction mechanism and kinetics 9.5.4 Productivity 9.5.5 Properties of metallocene-based polyethylene 9.5.6 Technology of the process 9.5.7 Further developments References 9.6 9.6.1 9.6.1.1 9.6.1.2 9.6.1.3 9.6.2 9.6.2.1 9.6.2.2 9.6.2.3 9.6.2.4 9.6.2.5 9.6.2.6 9.6.3 9.6.3.1 9.6.3.2 Supercritical Fluid Extraction and Fractionation from Solid Materials Decaffeination of coffee and tea and extraction of hops Decaffeination of green coffee beans Decaffeination of tea Preparation of hop extracts with CO2 Extraction of spices and herbs Description of a spice plant Extraction of essential oils Extraction of pungent constituents Production of natural colorants Production of natural antioxidants Production of high-value fatty oils Depestisation of vegetal raw materials Decontamination of the rice Depestisation of Ginseng 513 513 513 515 518 519 520 520 520 522 522 523 523 523 524 527 527 528 530 532 533 534 535 536 537 537 537 540 541 543 546 547 553 554 561 563 565 566 569 xix References 9.7 9.7.1 9.7.1.1 9.7.1.2 9.7.1.3 9.7.1.4 9.7.2 9.7.3 9.7.3.1 9.7.3.2 9.7.3.3 9.7.3.4 9.7.3.5 9.7.4 9.7.4.1 9.7.4.2 9.7.4.3 High pressure polymer processing Introduction State of the art in polymer thermodynamics Special polymer systems Modelling polymer systems Experimental methods in modelling polymer systems Phase behaviour of polymer blends under pressure High-pressure applications Process optimization Enhanced processing of polymer blends Polymer particles Plastics recycling Reactive polymer blending Future challenges Controlled synthesis Supramolecular structures Morphology of polymer materials References 9.8 9.8.1 9.8.2 9.8.3 9.8.3.1 9.8.3.2 9.8.3.3 9.8.4 9.8.4.1 9.8.4.2 9.8.4.3 9.8.5 9.8.5.1 9.8.5.2 9.8.5.3 9.8.6 9.8.6.1 9.8.6.2 9.8.7 9.8.7.1 9.8.7.2 9.8.7.3 Precipitation of solids with dense gases Introduction State of the art of material processing using Supercritical Fluids Crystallization from a Supercritical Solution (CSS) Fundamentals Design criteria Applications Rapid Expansion of Supercritical Solutions (RESS) Fundamentals Design criteria Applications Gas Antisolvent Processes (GASR, GASP, SAS, PCA, SEDS) Fundamentals Design criteria Applications Particles from Gas-Saturated Solutions (PGSS) Fundamentals Design criteria Application of PGSS process for micronisation Glycerides Cocoa butter Pharmaceuticals 571 576 576 576 577 578 579 580 580 580 581 582 582 582 583 583 583 583 584 587 587 587 587 587 588 589 589 589 589 590 592 592 593 593 596 596 598 599 600 603 604 XX 9.8.7.4 PGSS ofpolyethyleneglycols 9.8.7.5 Economy of the process 9.8.7.6 The advantages of PGSS 9.8.8 Conclusions References 9.9 Pharmaceutical processing with supercritical fluids 9.9.1 Introduction 9.9.2 Separation processes 9.9.2.1 Fractionation/purification by precipitation 9.9.2.2 Supercritical Fluid Chromatography 9.9.3 Extraction and purification (SFE) 9.9.4 Particle formation 9.9.4.1 Rapid Expansion 9.9.4.2 Recrystallization by Supercritical Anti-solvent 9.9.4.3 Impregnation with Supercritical Fluids 9.9.5 Future developments References 9.10 Treating microorganisms with high pressure 9.10.1 Introduction 9.10.2 Hydrostatic high pressure 9.10.2.1 State of the art 9.10.2.2 Equipment and methods 9.10.3 Supercritical CO2 treatment 9.10.3.1 State ofthe art 9.10.3.2 Equipment and methods 9.10.4 Conclusions References 9.11 Dry cleaning with liquid carbon dioxide 9.11.1 Introduction 9.11.2 Dry-cleaning processes 9.11.2.1 Conventional dry cleaning 9.11.2.2 Dry cleaning with liquid carbon dioxide 9.11.3 The CO2 dry-cleaning process 9.11.3.1 Fundamentals 9.11.3.2 Garments agitation 9.11.3.3 Machine configurations 9.11.4 Conclusions References 606 608 608 609 609 612 612 613 613 613 614 615 617 618 620 622 623 626 626 626 626 628 632 632 634 638 638 641 641 642 642 642 643 643 645 647 648 648 Subject Index 651
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری