Passive sampling techniques in environmental monitoring

Passive sampling techniques in environmental monitoring

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : R Greenwood; G Mills; B Vrana
  • ناشر : Amsterdam ; Oxford : Elsevier
  • چاپ و سال / کشور: 2007
  • شابک / ISBN : 9780444522252

Description

Contributors to Volume 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Volumes in the Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv Series Editorپfs Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi Part I: Air Chapter 1. Theory of solid phase microextraction and its application in passive sampling Yong Chen and Janusz Pawliszyn 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Calibration in solid phase microextraction. . . . . . . . . . . . . . . 6 1.2.1 Equilibrium extraction . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Exhaustive extraction. . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Pre-equilibrium extraction . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 Calibration based on first-order reaction rate constant 10 1.2.5 Calibration based on diffusion . . . . . . . . . . . . . . . . . . 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 2. The use of different designs of passive samplers for air monitoring of persistent organic pollutants Rosalinda Gioia, Kevin C. Jones and Tom Harner 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 The context: why develop passive air sampling techniques for POPS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 What approaches can be used? . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 The choice of sampler designs: features, advantages and potential problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 Low-capacity sampling: polymer-coated glass . . . . . . . 42 2.4.2 Medium-capacity sampling devices: polyurethane foam disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.3 High-capacity sampling devices: semipermeable membrane devices and XAD-2 resin . . . . . . . . . . . . . . 44 xv 2.5 Case studies and applications of PAS for POPS. . . . . . . . . . . 46 2.5.1 POGs: case studies and applications . . . . . . . . . . . . . . 46 2.5.2 SPMDs: case studies and applications. . . . . . . . . . . . . 47 2.5.3 PUF disks: case studies and applications . . . . . . . . . . 49 2.5.4 XAD-2 resin: case studies and applications . . . . . . . . . 51 2.6 Future improvements and needs for PAS for POPS . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Chapter 3. Passive sampling in combination with thermal desorption and gas chromatography as a tool for assessment of chemical exposure Anna-Lena Sunesson 3.1 The applicability of passive sampling for chemical exposure assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Passive sampling, basic theory . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Standards for evaluation of passive samplers . . . . . . . . . . . . 60 3.5 Sampler designs for passive sampling.thermal desorption analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6 Thermal desorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.7 Adsorbents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.8 Analytical equipment for thermal desorption . . . . . . . . . . . . 69 3.9 Applications using passive sampling.thermal desorption.gas chromatography for exposure assessment; examples and trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.10 Possible limitations/sources of error when using passive sampling.thermal desorption.gas chromatography . . . . . . . . 72 3.11 Self-assessment of exposure . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.12 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.12.1 Selecting a suitable adsorbent for the analytes of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.12.2 Minimising artefacts. . . . . . . . . . . . . . . . . . . . . . . . . 77 3.12.3 Blank samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.12.4 Personal (individual) exposure assessment . . . . . . . . 78 3.13 Concluding remarks and future perspectives . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Chapter 4. Use of permeation passive samplers in air monitoring Boz.ena Zabiega.a and Jacek NamiesپLnik 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.1 Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Contents xvi 4.3 Design of the permeation passive sampler . . . . . . . . . . . . . . . 91 4.4 Calibration of gut permeation passive samplers. . . . . . . . . . . 92 4.5 Determination of the calibration constants of gut permeation passive samplers with silicone membranes based on physicochemical properties of the analytes . . . . . . . . . . . . . . . . . . . . 92 4.5.1 Number of carbon atoms . . . . . . . . . . . . . . . . . . . . . . 95 4.5.2 Molecular mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.5.3 Boiling point temperature . . . . . . . . . . . . . . . . . . . . . 96 4.5.4 Linear temperature-programmed retention index system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.5.5 Application of GUT permeation passive sample in indoor air analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5. Membrane-enclosed sorptive coating as integrative sampler for monitoring organic compounds in air Peter Popp, Heidrun Paschke, Branislav Vrana, Luise Wennrich and Albrecht Paschke 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3.1 Preparation and design of the MESCO samplers . . . . 110 5.3.2 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.3 Generation of the standard gas mixtures and calibration of the samplers . . . . . . . . . . . . . . . . . . . . . 111 5.3.4 Thermodesorption/GC.MS analysis . . . . . . . . . . . . . . 114 5.3.5 Field application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.4.1 Laboratory exposure experiments. . . . . . . . . . . . . . . . 116 5.4.2 Comparison of the different MESCO types . . . . . . . . . 118 5.4.3 On-site exposure experiments. . . . . . . . . . . . . . . . . . . 119 5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Chapter 6. Towards quantitative monitoring of semivolatile organic compounds using passive air samplers Michael E. Bartkow, Carl E. Orazio, Todd Gouin, James N. Huckins and Jochen F. MuپNller 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 Estimating air concentrations . . . . . . . . . . . . . . . . . . . . . . . . 126 Contents xvii 6.3 Environmental factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Part II: Water Chapter 7. Theory, modelling and calibration of passive samplers used in water monitoring Kees Booij, Branislav Vrana and James N. Huckins 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 Basic concepts and models for SPMDs . . . . . . . . . . . . . . . . . 142 7.3 Model application to other passive samplers . . . . . . . . . . . . . 146 7.4 Validity of the model assumptions. . . . . . . . . . . . . . . . . . . . . 147 7.5 Water boundary layer resistance . . . . . . . . . . . . . . . . . . . . . . 149 7.6 Membrane resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.7 Biofouling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.8 Other intermediate phases . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.9.1 Static exposure design . . . . . . . . . . . . . . . . . . . . . . . . 158 7.9.2 Static renewal design . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.9.3 Continuous flow design . . . . . . . . . . . . . . . . . . . . . . . 160 7.9.4 In situ calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.10 Conclusion and outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Chapter 8. Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS) David A. Alvarez, James N. Huckins, Jimmie D. Petty, Tammy Jones-Lepp, Frank Stuer-Lauridsen, Dominic T. Getting, Jon P. Goddard and Anthony Gravell 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.2 Fundamentals of POCIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8.2.1 POCIS description and rationale . . . . . . . . . . . . . . . . 173 8.2.2 Applicability of POCIS . . . . . . . . . . . . . . . . . . . . . . . . 176 8.3 Theory and modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.4 Study considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.4.1 Use and processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.4.2 Data quality consideration . . . . . . . . . . . . . . . . . . . . . 183 8.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.5.1 Application of POCIS for pharmaceutical monitoring in the United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Contents xviii 8.5.2 Comparison of POCIS and traditional sampling for wastewater monitoring. . . . . . . . . . . . . . . . . . . . . . . . 186 8.5.3 Application of POCIS for pesticide monitoring in Denmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.5.4 Application of POCIS for pharmaceutical monitoring in the United Kingdom. . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.6 Future research consideration. . . . . . . . . . . . . . . . . . . . . . . . 192 8.6.1 Development of the PRC approach in POCIS . . . . . . . 192 8.6.2 Determination of sampling rate and kinetic data for chemicals of interest . . . . . . . . . . . . . . . . . . . . . . . . . 194 8.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Chapter 9. Monitoring of priority pollutants in water using Chemcatcher passive sampling devices Richard Greenwood, Graham A. Mills, Branislav Vrana, Ian Allan, Roc.پLo Aguilar-Mart.پLnez and Gregory Morrison 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.2 Concept of Chemcatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.2.1 Receiving phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 9.2.2 Diffusion membranes . . . . . . . . . . . . . . . . . . . . . . . . . 201 9.2.3 Sampler body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 9.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9.5 Sampling of hydrophobic organic contaminants. . . . . . . . . . . 207 9.5.1 Calibration data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 9.5.2 Performance reference compound concept . . . . . . . . . 210 9.5.3 Non-polar Chemcatcher/water distribution coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.5.4 Empirical uptake rate model . . . . . . . . . . . . . . . . . . . 211 9.5.5 Estimation of in situ TWA concentrations . . . . . . . . . 212 9.6 Sampling of hydrophilic organic contaminants . . . . . . . . . . . 213 9.6.1 Integrative sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 213 9.6.2 Short pollution event detector . . . . . . . . . . . . . . . . . . 215 9.7 Sampling of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.8 Sampling of organometallic compounds. . . . . . . . . . . . . . . . . 217 9.9 Field applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.9.1 Pan-European field trials to compare the performances of the Chemcatcher and spot sampling in monitoring the quality of river water . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.9.2 Monitoring pesticide runoff in Brittany, France . . . . . 219 Contents xix 9.9.3 Field trial in the River Meuse in The Netherlands . . . 220 9.9.4 Field trial in the estuary of the River Ribble in the United Kingdom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.10 Comparison of the performance of the Chemcatcher with that of other sampling devices. . . . . . . . . . . . . . . . . . . . 223 9.11 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Chapter 10. Membrane-enclosed sorptive coating for the monitoring of organic compounds in water Albrecht Paschke, Branislav Vrana, Peter Popp, Luise Wennrich, Heidrun Paschke and Gerrit SchuپNuپNrmann 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 10.2 Passive uptake model for MESCO sampler . . . . . . . . . . . . . 232 10.3 Design of the different MESCO formats . . . . . . . . . . . . . . . 233 10.3.1 PDMS-coated fibre enclosed in an LDPE membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 10.3.2 PDMS-coated stir bar enclosed in a dialysis membrane bag (MESCO I) . . . . . . . . . . . . . . . . . . . 233 10.3.3 Silicone material enclosed in an LDPE membrane (MESCO II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 10.4 Laboratory-derived sampling rates of the various MESCO formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 10.5 Field application of MESCO samplers . . . . . . . . . . . . . . . . . 237 10.5.1 A case study with MESCO I for monitoring of persistent organic pollutants in surface water . . . . . 237 10.5.2 Field trials with MESCO II.first results . . . . . . . . 246 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Chapter 11. In situ monitoring and dynamic speciation measurements in solution using DGT Kent W. Warnken, Hao Zhang and William Davison 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 11.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 11.2.1 Gel preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 11.2.2 Diffusive gel variants . . . . . . . . . . . . . . . . . . . . . . . 254 11.2.3 Alternative binding agents . . . . . . . . . . . . . . . . . . . 254 11.3 DGT theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 11.3.1 DGT principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 11.3.2 Potential sources of error when using DGT . . . . . . 257 Contents xx 11.4 Novel applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 11.4.1 Analytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 11.4.2 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 11.4.3 Speciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 11.4.4 Bioavailability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 11.4.5 The use of DGT as a routine monitoring tool . . . . . 273 11.4.6 Metal remobilization from settling particles . . . . . . 274 11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Chapter 12. Use of ceramic dosimeters in water monitoring HansjoپNrg WeiX, Kristin Schirmer, Stephanie Bopp and Peter Grathwohl 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 12.2 Ceramic dosimeter design . . . . . . . . . . . . . . . . . . . . . . . . . . 280 12.2.1 Ceramic membrane. . . . . . . . . . . . . . . . . . . . . . . . . 280 12.2.2 Sorbent material. . . . . . . . . . . . . . . . . . . . . . . . . . . 282 12.2.3 Determination of time-weighted average chemical concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 12.2.4 Effect of temperature . . . . . . . . . . . . . . . . . . . . . . . 285 12.3 Practical considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 12.3.1 Preparation of the ceramic dosimeter for field application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 12.3.2 Sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 12.3.3 Detection limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 12.3.4 Long-term stability . . . . . . . . . . . . . . . . . . . . . . . . . 289 12.4 Example of field results and future work. . . . . . . . . . . . . . . 290 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Chapter 13. Passive diffusion samplers to monitor volatile organic compounds in ground-water Don A. Vroblesky 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 13.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 13.2.1 VOCs in ground-water at the ground-water/surfacewater interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 13.2.2 VOCs in ground-water in monitoring wells . . . . . . . 302 13.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Contents xxi Chapter 14. Field study considerations in the use of passive sampling devices in water monitoring Per-Anders Bergqvist and Audrone Zaliauskiene 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 14.1.1 SPMD rationale and applicability . . . . . . . . . . . . . . 312 14.2 Field study considerations. . . . . . . . . . . . . . . . . . . . . . . . . . 315 14.2.1 Pre-exposure considerations . . . . . . . . . . . . . . . . . . 315 14.2.2 SPMD storage considerations . . . . . . . . . . . . . . . . . 322 14.2.3 Precautions/procedures during deployment and retrieval of SPMDs . . . . . . . . . . . . . . . . . . . . . . . . . 323 14.3 Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Chapter 15. Techniques for quantitatively evaluating aquatic passive sampling devices B. Scott Stephens and Jochen F. MuپNller 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 15.2 Key parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 15.2.1 Equilibrium partitioning. . . . . . . . . . . . . . . . . . . . . 330 15.2.2 Time-integrated sampling . . . . . . . . . . . . . . . . . . . . 330 15.3 Laboratory methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 15.3.1 The concentration problem. . . . . . . . . . . . . . . . . . . 331 15.3.2 Batch techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 331 15.3.3 Flow through techniques . . . . . . . . . . . . . . . . . . . . 335 15.4 In situ methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 15.4.1 High-volume solid-phase extraction. . . . . . . . . . . . . 339 15.4.2 Grab sampling validation methods . . . . . . . . . . . . . 341 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 Part III: Soils and Sediments Chapter 16. Theory and applications of DGT measurements in soils and sediments William Davison, Hao Zhang and Kent W. Warnken 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 16.2 Principles in soils and sediments. . . . . . . . . . . . . . . . . . . . . 354 16.3 Modelling interactions of DGT with soils and sediments . . . 357 16.4 Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 16.4.1 Practicalities for deployments in soils . . . . . . . . . . . 360 Contents xxii 16.4.2 Soil dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 16.4.3 Biological mimicry . . . . . . . . . . . . . . . . . . . . . . . . . 363 16.5 Sediments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 16.5.1 Practicalities for deployments in sediments. . . . . . . 368 16.5.2 Analyte distributions from gel slicing . . . . . . . . . . . 369 16.5.3 Direct measurements of analytes in the binding layer 371 16.5.4 Sources of localised maxima . . . . . . . . . . . . . . . . . . 373 16.5.5 Advances in understanding of soils and sediments using DGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 Chapter 17. Passive sampling devices for measuring organic compounds in soils and sediments Gangfeng Ouyang and Janusz Pawliszyn 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 17.2 PETREX passive soil gas and sediment vapour sampling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 17.3 GORETM modules for passive soil gas collection . . . . . . . . . 381 17.4 Emfluxs passive soil gas sampling system. . . . . . . . . . . . . . 382 17.5 Semipermeable membrane devices for passive sampling in sediment pore-water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 17.6 Solid-phase microextraction devices for passive sampling in soil and sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 17.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 Part IV: Ecotoxicology and Biomonitoring Chapter 18. Use of passive sampling devices in toxicity assessment of groundwater Kristin Schirmer, Stephanie Bopp and Jacqueline Gehrhardt 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 18.2 Concepts and examples for linking passive sampling of groundwater with toxicological analysis. . . . . . . . . . . . . . . . 394 18.2.1 The toximeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 18.2.2 Toxicological analysis of solvent extracts obtained from passive sampling devices. . . . . . . . . . . . . . . . . 401 18.3 Potential future approaches . . . . . . . . . . . . . . . . . . . . . . . . 403 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Contents xxiii Chapter 19. Monitoring of chlorinated biphenyls and polycyclic aromatic hydrocarbons by passive sampling in concert with deployed mussels Foppe Smedes 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 19.2 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 19.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 19.2.2 History of musselwatch programme . . . . . . . . . . . . 409 19.2.3 Passive samplers. . . . . . . . . . . . . . . . . . . . . . . . . . . 409 19.2.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 19.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 19.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 19.3.2 Mussels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 19.3.3 Passive sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 417 19.3.4 QA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 19.3.5 Partition coefficients . . . . . . . . . . . . . . . . . . . . . . . . 424 19.4 Data handling and calculation . . . . . . . . . . . . . . . . . . . . . . . 425 19.4.1 Mussels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 19.4.2 Calculation of sampling rate . . . . . . . . . . . . . . . . . . 426 19.4.3 Analytical precision of sampling rate . . . . . . . . . . . 426 19.4.4 Artefacts in sampling rates . . . . . . . . . . . . . . . . . . . 428 19.4.5 Results for RS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 19.4.6 Passive sampling and aqueous concentrations . . . . . 431 19.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 19.5.1 Concentrations in water and mussels . . . . . . . . . . . 432 19.5.2 Equilibrium or uptake phase . . . . . . . . . . . . . . . . . 434 19.5.3 BAF values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 19.6 Usefulness of PS in monitoring . . . . . . . . . . . . . . . . . . . . . . 444 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Monitoring pollutants in air, soil and water is a routine requirement in the workplace. This book provides a collection of information on a set of techniques that help monitor the quality of air, surface and ground waters. It also covers theory and applications, providing information and guidelines for use in the field.
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری