Robust Control Design with MATLAB : with 288 figures

Robust Control Design with MATLAB : with 288 figures

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : Da-Wei Gu; Mihail M Konstantinov; Petko Hr Petkov
  • ناشر : London : Springer
  • چاپ و سال / کشور: 2005
  • شابک / ISBN : 9781852339838

Description

Contents Part I Basic Methods and Theory 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Control-system Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 System Stabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Coprime Factorisation and Stabilising Controllers . . . . . . . . . . . . 7 1.4 Signals and System Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 Vector Norms and Signal Norms. . . . . . . . . . . . . . . . . . . . . 9 1.4.2 System Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Modelling of Uncertain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Unstructured Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Parametric Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Linear Fractional Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Structured Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Robust Design Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Small-gain Theorem and Robust Stabilisation . . . . . . . . . . . . . . . 25 3.2 Performance Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Structured Singular Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 H∞ Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 Mixed Sensitivity H∞ Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 2-Degree-Of-Freedom H∞ Design . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 H∞ Suboptimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Solution Formulae for Normalised Systems . . . . . . . . . . . . 39 4.3.2 Solution to S-over-KS Design . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.3 The Case of D22 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.4 Normalisation Transformations . . . . . . . . . . . . . . . . . . . . . . 45 4.3.5 Direct Formulae for H∞ Suboptimal Central Controller 47 4.4 Formulae for Discrete-time Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 50 xii Contents 5 H∞ Loop-shaping Design Procedures . . . . . . . . . . . . . . . . . . . . . . 55 5.1 Robust Stabilisation Against Normalised Coprime Factor Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2 Loop-shaping Design Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3 Formulae for the Discrete-time Case . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.1 Normalised Coprime Factorisation of Discrete-time Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.2 Robust Controller Formulae . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.3 The Strictly Proper Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.4 On the Three DARE Solutions . . . . . . . . . . . . . . . . . . . . . . 65 5.4 A Mixed Optimisation Design Method with LSDP . . . . . . . . . . . 67 6 μ-Analysis and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1 Consideration of Robust Performance . . . . . . . . . . . . . . . . . . . . . . 71 6.2 μ-Synthesis: D-K Iteration Method . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 μ-Synthesis: μ-K Iteration Method . . . . . . . . . . . . . . . . . . . . . . . . 77 7 Lower-order Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1 Absolute-error Approximation Methods . . . . . . . . . . . . . . . . . . . . 80 7.1.1 Balanced Truncation Method . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.2 Singular Perturbation Approximation . . . . . . . . . . . . . . . . 82 7.1.3 Hankel-norm Approximation . . . . . . . . . . . . . . . . . . . . . . . . 83 7.1.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Reduction via Fractional Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 Relative-error Approximation Methods . . . . . . . . . . . . . . . . . . . . . 90 7.4 Frequency-weighted Approximation Methods . . . . . . . . . . . . . . . . 92 Part II Design Examples 8 Robust Control of a Mass-Damper-Spring System . . . . . . . . . 101 8.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Frequency Analysis of Uncertain System. . . . . . . . . . . . . . . . . . . . 107 8.3 Design Requirements of Closed-loop System . . . . . . . . . . . . . . . . 108 8.4 System Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.5 Suboptimal H∞ Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.6 Analysis of Closed-loop System with Khin . . . . . . . . . . . . . . . . . . 117 8.7 H∞ Loop-shaping Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.8 Assessment of H∞ Loop-shaping Design . . . . . . . . . . . . . . . . . . . . 128 8.9 μ-Synthesis and D-K Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.10 Robust Stability and Performance of Kmu . . . . . . . . . . . . . . . . . . 141 8.11 Comparison of H∞, H∞ LSDP and μ-controllers . . . . . . . . . . . . 150 8.12 Order Reduction of μ-controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Contents xiii 9 A Triple Inverted Pendulum Control-system Design . . . . . . . 163 9.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.2 Modelling of Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 9.3 Design Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 9.4 System Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 9.5 H∞ Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9.6 μ-Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.7 Nonlinear System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10 Robust Control of a Hard Disk Drive . . . . . . . . . . . . . . . . . . . . . . 203 10.1 Hard Disk Drive Servo System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10.2 Derivation of Uncertainty Model . . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.3 Closed-loop System-design Specifications . . . . . . . . . . . . . . . . . . . 215 10.4 System Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 Controller Design in Continuous-time . . . . . . . . . . . . . . . . . . . . . . 219 10.5.1 μ-Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 10.5.2 H∞ Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 10.5.3 H∞ Loop-shaping Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 10.6 Comparison of Designed Controllers . . . . . . . . . . . . . . . . . . . . . . . 229 10.7 Controller-order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.8 Design of Discrete-time Controller . . . . . . . . . . . . . . . . . . . . . . . . . 239 10.9 Nonlinear System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.10Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 11 Robust Control of a Distillation Column . . . . . . . . . . . . . . . . . . . 249 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 11.2 Dynamic Model of the Distillation Column . . . . . . . . . . . . . . . . . 250 11.3 Uncertainty Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 11.4 Closed-loop System-performance Specifications . . . . . . . . . . . . . . 256 11.5 Open-loop and Closed-loop System Interconnections . . . . . . . . . 261 11.6 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 11.6.1 Loop-shaping Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 11.6.2 μ-Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 11.7 Nonlinear System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 12 Robust Control of a Rocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 12.1 Rocket Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 12.2 Uncertainty Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 12.3 Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 12.4 H∞ Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 12.5 μ-Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 12.6 Discrete-time μ-Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 12.7 Simulation of the Nonlinear System . . . . . . . . . . . . . . . . . . . . . . . . 328 xiv Contents 12.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 13 Robust Control of a Flexible-Link Manipulator . . . . . . . . . . . . 335 13.1 Dynamic Model of the Flexible Manipulator . . . . . . . . . . . . . . . . 336 13.2 A Linear Model of the Uncertain System . . . . . . . . . . . . . . . . . . . 339 13.3 System-performance Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 355 13.4 System Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 13.5 Controller Design and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 13.6 Nonlinear System Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 13.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Robust Control Design with MATLAB helps your learn how to use well-developed advanced robust control design methods in practical cases. To this end, several realistic control design examples ranging from teaching-laboratory experiments, such as a mass-damper-spring assembly, to complex systems like a flexible-link manipulator are given detailed presentation. All the design exercises are conducted using MATLAB Robust Control Toolbox, Control System Toolbox and Simulink." "By sharing their experiences in industrial cases with minimum recourse to complicated theories and formulae, the authors convey essential ideas and useful insights into robust industrial control systems design using major H[infinity] optimization and related methods allowing you quickly to move on with your own challenges." "Robust Control Design with MATLAB is for graduate students and practising engineers who want to learn how to deal with robust control design problems without spending a lot of time in researching complex theoretical developments." "The demonstrations are current for MATLAB version 7.01, Robust Control Toolbox version 3.0, Control System Toolbox version 6.1 and Simulink version 6.1"--Jacket.
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری