Nanoparticles : from theory to application

Nanoparticles : from theory to application

  • نوع فایل : کتاب
  • زبان : انگلیسی
  • مؤلف : Günter Schmid, Dr.
  • ناشر : Weinheim : Wiley-VCH ; Chichester : John Wiley [distributor]
  • چاپ و سال / کشور: 2010
  • شابک / ISBN : 9783527325894

Description

List of Contributors. 1 General Introduction (Gunter Schmid). 2 Quantum Dots (Wolfgang Johann Parak, Liberato Manna, Friedrich C. Simmel, Daniele Gerion, and Paul Alivisatos). 2.1 Introduction and Outline. 2.2 Nanoscale Materials and Quantum Mechanics. 2.2.1 Nanoscale Materials as Intermediate Between Atomic and Bulk Matter. 2.2.2 Quantum Mechanics. 2.3 From Atoms to Molecules and Quantum Dots. 2.4 Shrinking Bulk Material to a Quantum Dot. 2.4.1 Three-Dimensional Systems (Bulk Material). 2.4.2 Two-Dimensional Systems. 2.4.3 One-Dimensional Systems (Quantum Wires). 2.4.4 Zero-Dimensional Systems(Quantum Dots). 2.5 Energy Levels of a (Semiconductor) Quantum Dot. 2.6 Varieties of Quantum Dots. 2.6.1 Lithographically Defined Quantum Dots. 2.6.2 Epitaxially Self-Assembled Quantum Dots. 2.6.3 Colloidal Quantum Dots. 2.7 Optical Properties of Quantum Dots. 2.7.1 Absoprtion and Emission Spectra. 2.7.2 Spectral Diffusion and Blinking. 2.7.3 Metal Nanoparticles. 2.7.4 Overview of Some Selected Applications. 2.8 Some (Electrical) Transport Properties of Quantum Dots. 2.8.1 Coulomb Blockade: Basic Theory and Historical Sketch. 2.8.2 Single-Electron Tunneling. 2.8.3 Tunneling Transport: The Line Shape of Conductance Peaks. 2.8.4 Some Applications. References. 3 Syntheses and Characterizations. 3.1 Zintl Ions. 3.1.1 Homoatomic and Intermetalloid Tetrel Clusters - Synthesis, Characterization, and Reactivity (Sandra Scharfe and Thomas F. Fassler). 3.1.1.1 Introduction. 3.1.1.2 Homoatomic Clusters of Tetrel Elements. 3.1.1.2.1 Discrete Clusters in Neat Solids and from Solutions. 3.1.1.2.2 Cluster Shapes and Ion Packing. 3.1.1.2.3 Linked E9 Clusters. 3.1.1.3 Intermetalloid Clusters of Tetrel Elements. 3.1.1.3.1 Complexes of Zintl Ions. 3.1.1.3.2 Ligand-Free Heteroatomic Cluster: Intermetalloids. 3.1.1.4 Beyond Deltahedral Clusters. References. 3.2 Semiconductor Nanoparticles. 3.2.1 Synthesis and Characterication of II-VI Nanoparticles(alexander Eychmuller). 3.2.1.1 Historical Review. 3.2.1.2 Thiol-Stabilized Nanoparticles. 3.2.1.3 The "Hot-Injection" Synthesis. 3.2.1.4 Core-Shell Nanocrystals. 3.2.1.5 Quantum Dot Quantum Wells. References. 3.2.2 Synthesis and Characterization of III-V Semiconductor Nanoparticles(Uri Banin). 3.2.2.1 Introduction. 3.2.2.2 Synthetic Strategy. 3.2.2.3 InAs and InP Nanocrystals. 3.2.2.3.1 Synthesis of InAs and InP Nanocrystals. 3.2.2.3.2 Structural and Basic Optical Characterization of InAs and InP Nanocrystals. 3.2.2.4 Group III-V Core-Shell Nanocrystals: Synthesis and Characterization. 3.2.2.4.1 Synthesis of Core-Shell Nanocrytals with InAs Cores. 3.2.2.4.2 Optical Characterization of the Core-Shell Nanocrystals. 3.2.2.4.3 Chemical and Strcutral Characterization. 3.2.2.4.4 Model Calculations for the Band Gap. 3.2.2.4.5 Stability of Core-Shell Nanocrystals. References. 3.2.3 Synthesis and Characterization of Ib-VI Nanoclusters(Stefanie Dehnen, Andreas Eichhofer, John F. Corrigan, Olaf Fuhr, and Dieter Fenske). 3.2.3.1 Introduction. 3.2.3.2 Chalcogen-Bridged Copper Clusters. 3.2.3.2.1 Synthesis Routes. 3.2.3.2.2 Sulfur-Bridged Copper Clusters. 3.2.3.2.3 Selenium-Bridged Copper Clusters. 3.2.3.2.4 Tellurium-Bridged Copper Clusters. 3.2.3.3 Chalcogen-Bridged Silver Clusters. 3.2.3.3.1 Sulfur-Bridged Silver Clusters. 3.2.3.3.2 Selenium-Bridged Silver Clusters. 3.2.3.3.3 Tellurium-Bridged Silver Clusters. 3.2.3.4 Selenium-Bridged Gold Clusters. References. 3.3 Synthesis of Metal Nanoparticles. 3.3.1 Noble Metal Nanoparticles (Gunter Schmid). 3.3.1.1 Introduction. 3.3.1.2 History and Background. 3.3.1.3 Stabilization of Metal Nanoparticles. 3.3.1.4 Synthetic Methods. 3.3.1.4.1 Salt Reduction. 3.3.1.4.2 Controlled Decomposition. 3.3.1.5 Shape Control. References. 3.3.2 Synthesis, Properties and Applications of Magnetic Nanoparticles (Galyna Krylova, Maryna I. Bodnarchuk, Ulrich I. Tromsdorf, Elena V. Shevchenko, Dmitri V. Talapin, and Horst Weller). 3.3.2.1 Introduction. 3.3.2.1.1 Reverse Micelles Technique. 3.3.2.1.2 Sonochemical Syntheses. 3.3.2.1.3 Colloidal Syntheses. 3.3.2.2 Colloidal Synthesis of Magnetic Metal Nanoparticles. 3.3.2.2.1 General Remarks on the Synthesis of Co and CoPt3 Nanocrystals. 3.3.2.2.2 Synthesis of Cobalt Nanoparticles with Different Crystalline Modification. 3.3.2.2.3 Synthesis of CoPt3 Magnetic Alloy Nanocrystals. 3.3.2.2.4 Shape-Controlled Synthesis of Magnetic Nanoparticles. 3.3.2.2.5 Other Metal Magnetic Nanoparticles Synthesized by Methods of Colloidal Chemistry. 3.3.2.3 Iron Oxide-Based Magnetic Nanocrystals. 3.3.2.3.1 Maghemite and Magnetite Nanocrystals. 3.3.2.3.2 Nanocrystals of Other Iron Oxides (Hematite, Wustite, Goethite). 3.3.2.3.3 Nanocrystals of Metal Ferrites. 3.3.2.4 Multicomponent Magnetic Nanocrystals. 3.3.2.4.1 Magnetic Core-Shell Nanoparticles. 3.3.2.4.2 Dumbbell-Like Nanoparticles. 3.3.2.4.3 Hollow Magnetic Nanocrystals. 3.3.2.5 Size- and Shape-Dependent Magnetic Properties of Magnetic Metal Nanoparticles. 3.3.2.6 Magnetic Nanocrystals for Data Storage Applications. 3.3.2.7 Biomedical Applications for Magnetic Nanoparticles. 3.3.2.7.1 Design of Magnetic Particles for Biomedical Applications. 3.3.2.7.2 Drug Delivery. 3.3.2.7.3 Gene Delivery. 3.3.2.7.4 Magnetic Separation. 3.3.2.7.5 Magnetic Hyperthermia. 3.3.2.7.6 Magnetic Resonance Imaging. 3.3.2.7.7 Tomographic Imaging. 3.3.2.7.8 The Role of Magnetic Nanoparticle-Based Contrast Agents in MRI. References. 4 Organization of Nanoparticles. 4.1 Semiconductor Nanoparticles (Nikolai Gaponik and Alexander Eychmuller). 4.1.1 Molecular Crystals and Superlattices. 4.1.2 Layers of Semiconductor Nanocrystals. 4.1.3 Coupling of Semiconductor Nanocrystals. References. 4.2 Metal Nanoparticles (Gunter Schmid, Dmitri V. Talapin, and Elena v. Shevchenko). 4.2.1 Three-Dimensional Organization of Metal Nanoparticles. 4.2.2 Two- and One-Dimensional Structures of Metal Nanoparticles. 4.2.2.1 Self-Assembly. 4.2.2.2 Guided Self-Assembly. 4.2.2.3 Aimed Structures. References. 5 Properties. 5.1 Semiconductor Nanoparticles. 5.1.1 Optical and Electronic Properties of Semiconductor Nanocrystals (Uri Banin and Oded Millo). 5.1.1.1 Introduction. 5.1.1.2 Semiconductor Nanocrystals as Artificial Atoms. 5.1.1.3 Theoretical Descriptions of the Electronic Structure. 5.1.1.4 Atomic-Like States in Core-Shell Nanocrystals: Spectroscopy and Imaging. 5.1.1.5 Level Structure of CdSe Quantum Rods. 5.1.1.6 Level Structure and Band-Offsets in Heterostructured Seeded Quantum Rods. 5.1.1.7 Optical Gain and Lasing in Semiconductor Nanocrystals. 5.1.2 Optical and Thermal Properties of Ib-VI Nanoparticles (Stefanie Dehnen, Andreas Eichhofer, John F. Corrigna, Olaf Fuhr, and Dieter Fenske). 5.1.2.1 Optical Spectra of Selenium-Bridged and Tellurium-Bridged Copper Clusters. 5.1.2.2 Thermal Behavior of Seleium-Bridged Copper Clusters. References. 5.2 Electrical Properties of Metal Nanoparticles. (Kerstin Blech, Melanie Homberger, and Ulrich Simon). 5.2.1 Introduction. 5.2.2 Physical Background and Quantum Size Effect. 5.2.2.1 Single-Electron Tunneling. 5.2.2.2 The Single-Electron Transistor. 5.2.3 Thin Film Structures. 5.2.4 Single-Electron Tunneling in Metal Nanoparticles. 5.2.4.1 STM Configurations. 5.2.4.2 Chemical Switching and Gating of Current Through Nanoparticles. 5.2.4.3 Individual Particles and 1-D Assemblies in Nanogap. 5.2.5 Collective Charge Transport in Nanoparticle Assemblies. 5.2.5.1 Two-Dimensional Arrangements. 5.2.5.2 Three-Dimensional Arrangements. 5.2.6 Concluding Remarks. References. 6 Semiconductor Quantum Dots for Analytical and Bioanalytical Applications (Ronit Freeman, Jian-Ping Xu, and Itamar Willner). 6.1 Introduction. 6.2 Water Solubilization and Functionalization of Quantum Dots with Biomolecules. 6.3 Quantum Dot-Based Sensors. 6.3.1 Receptor- and Ligand-Functionalized QDs for Sensing. 6.3.2 Functionalization of QDs with Chemically Reactive Unites Participating in the Sensing. 6.4 Biosensors. 6.4.1 Application of QDs for Probing Biorecognition Processes. 6.4.2 Probing Biocatalytic Transformations with QDs. 6.4.3 Probing Structural Perturbations of Proteins with QDs. 6.5 Intracellular Applications of QDs. 6.6 Conclusions and Perspectives. References. 7 Conclusions and Perspectives (Gunter Schmid, on behalf of all the authors). Index.
Very small particles are able to show astonishing properties. For example, gold atoms can be combined like strings of pearls, while nanoparticles can form one-, two- and three-dimensional layers. These assemblies can be used, for instance, as semiconductors, but other electronic as well as optical properties are possible.
اگر شما نسبت به این اثر یا عنوان محق هستید، لطفا از طریق "بخش تماس با ما" با ما تماس بگیرید و برای اطلاعات بیشتر، صفحه قوانین و مقررات را مطالعه نمایید.

دیدگاه کاربران


لطفا در این قسمت فقط نظر شخصی در مورد این عنوان را وارد نمایید و در صورتیکه مشکلی با دانلود یا استفاده از این فایل دارید در صفحه کاربری تیکت ثبت کنید.

بارگزاری